
DevOps for Absolute
Beginners

1/13

After coding, testers will check the application to
ensure it works.

Once the application is tested, you must build and
package your application into a format that can run on
the server .

Finally, you need to deploy it on a public server so
users can access it.

After delivering your software for the first time, you'll still need to address a few questions.

Are there any unexpected behaviors in the software that
weren't intended?

Are there any suggestions or performance
improvement requests coming from end-users?

Are users asking for any new ideas or features?

as quickly as possible.

monitor and operate

This is a never-ending cycle.

You will always need to attend to these queries and provide solutions

This means you must continuously the application even after it is
launched.

Is this the end?

No.

DevOps for Absolute Beginners

Everything starts with someone's brilliant idea to
create something new or improve something existing.

First, come up with a good idea for an application that
solves a problem or enhances a workflow.

Next, list the features it should have.

Developers will then write the code.

The primary objective of IT companies is to

and solve their
problems.

create
software applications / products that

meet the needs of users

At the end of the day, creating your software is
just the beginning.

 It's
that simple.

You still need to deliver it to
your end users so they can use it.

No matter what, you need to follow a step-by-step process to
deliver software.

Different IT companies may have 10 or 100 steps, but we can simplify
these into five to six core steps that all IT firms follow.

Similar to ordering a pizza at Pizza Hut and receiving it
after 15 minutes. Both scenarios are similar at a
high level, but delivering a software product
takes much longer than 15 minutes.

http://kodekloud.com/?utm_source=footer_logo&utm_medium=ebook&utm_campaign=fresher_ebook_page1

So, every time you need to introduce a new feature, fix something, or improve something, the
team will go through the same core steps we discussed previously.

This continuous delivery process should be:

f a s t

Rapid delivery means the client gets
new features and improvements
quickly, keeping their business
competitive.

f r e q u e n t

Regular updates give users new
features, better performance, and
quick fixes consistently, keeping their
software up-to date.

h i g h - q u a l i t y

High-quality releases provide the end
user with a reliable product, reducing
disruptions and enhancing
satisfaction.

Achieving this is challenging because of certain barriers in the way IT companies or teams
have traditionally worked.

Introducing You to the Prime Challenge
Delivering software application has two main parts 

Coding & Running, with all other tasks(steps) revolving around 
and supporting them!

This can create a gap

d e v e l o p e r s
t e a m

Developers code the
application.

c o d i n g i t

&

I T o p e r a t i o n s
t e a m

The operations team runs
the application.

r u n n i n g i t

This miscommunication can cause problems.

Dev Team
We wrote the code but can’t run it

Developers often
 or be deployed.

write code without thinking
about how it will run

The operations team
 it.

tries to run the
application without fully understanding

Ops Team
We run the app but don’t know how it works

Developers might finish coding but
The for the

 might not be good or
detailed enough.

deployment guide
operations team

If the feature or bug fix deployment gives
deployment errors

but
The assumes it's a

problem with the code and sends it back
for improvements.

operations team

This back-and-forth can stretch the release period from days to weeks or even months. These
barriers make it difficult to deliver software quickly, frequently, and with high quality.

2/13

This is what we call as

 Software Development Life Cycle
(SDLC):

Bra i nstorm i ng

Requ iremen t gather i ng

Cod i ng

Test i ng

Bu ild and Package

Deploy i n g & Run n i ng

Mon i tor i n g

1

2

3

4

5

6

7

This creates a continuous
delivery process, making
software development an
ongoing cycle.

2

3

45

6

7

1

http://kodekloud.com/?utm_source=footer_logo&utm_medium=ebook&utm_campaign=fresher_ebook_page2

DevOps was introduced to remove
these type of obstacles and speed up
the software delivery process while
maintaining quality through a fully-
automated, streamlined process.

Fundamentals of DevOps
The perfect starter course to launch yourself into
the key concepts of the DevOps world!

Michael Forrester
Principal Trainer at KodeKloud, DevOps Advocate, Certified
AWS DevOps Engineer with 11 additional AWS certifications

Practical Implementation and the Role of DevOps Engineers

Creation of DevOps Rol
 Collaborating development and operations task
 Required specific focus and expertise

Role Variation
 Developers or operations team taking on DevOps

task
 Dedicated DevOps Engineer

This role ensures fast, high-quality delivery through key measures.

Keep in mind, DevOps emphasizes cultural,
philosophical, and process changes over specific roles!

Want to Enter IT Industry Without a Software Engineering
Background?

Many people want to join the
IT industry because of its

 Potential for innovatio
 High paycheck
 And perks compared to

other professions

Which is very appealing and
true.

Starting out as a junior or
associate developer/software
engineer is not easy.

Challenges Starting Out..

 Requires coding experienc

 Familiarity with at least one
 programming language

 Proficiency in data
structures and algorithms

You can still work in the IT industry
without being an expert in coding.

Alternative Pat

 Work in IT as a tech
professiona

 No need for deep coding
expertis

 No need to be an experienced
programmer.

DevOps Engineer role is ideal

Let's walk through the Software Development
Life Cycle - SDLC

Key Areas of Focus

 What you need to know Where to give more focus High-level understanding needed

As a DevOps engineer, you don't need to focus on this part, but it's good to understand:

When an idea is proposed, it goes through several steps before becoming a fully functional
part of the project.

Defining Requ irements :

 Brainstorming and Documenting Needs: Collect
what users and stakeholders need, and turn these
into clear requirements

 User Stories: Create simple descriptions based on
these needs, detailing how the system will help
users.

Managing Tasks :

 Project Management Tools: Tools like
 are used to organize and

track these tasks and requirements
 Task Prioritization: These tools help teams

prioritize tasks, ensuring that the most critical
requirements are addressed first

 Progress Tracking: Regular updates and tracking
ensure that the project stays on schedule .

JIRA,
ClickUp, and Asana

 E x p lo r e . . .

Feedback Loops:

Regularly reviewing and
incorporating feedback
helps in improving the
project adapting to any

changes in requirements or
priorities.

Communication:

Alignment and updates.

Project Milestones:

Identify key deliverables
and deadlines in the

project timeline.

Stakeholder
Engagement:

Involve users and
stakeholders early to

gather accurate
requirements.

Brainstorming

&

requirement
gathering

1 2

3/13

http://kodekloud.com/?utm_source=footer_logo&utm_medium=ebook&utm_campaign=fresher_ebook_page3
https://kodekloud.com/courses/fundamentals-of-devops/?utm_source=course_banner&utm_medium=ebook&utm_campaign=fresher_ebook_fundamentals_of_devops

Coding is the main responsibility of software engineers. It requires talent in coding and
creating efficient software using best practices. However,

 and do not need to be involved in this phase.

 as a DevOps engineer, you are not

responsible for coding the actual software

However, it is important to learn the following to gain a high-level understanding:

Choosing Development Methodologies:

Selecting the right approach for structuring the project is
essential for long-term success

 Waterfall: Linear and step-by-step process where
each phase must be completed before moving to the
next

 Agile: Flexible and iterative process allowing for
regular feedback and continuous improvement.

Structuring Software Applications:

Understanding how to structure your codebase for
better maintenance and scalability

 Microservices: Small, independent services that can
be developed and deployed separately

 Monolithic: All parts of the application are
interconnected and deployed together.

Managing Work with Scrum:

A popular Agile framework for managing tasks and
ensuring steady progress

 Scrum: Uses short, regular intervals called ‘sprints’ to
manage tasks

 Daily Stand-Ups: Quick meetings to discuss progress
and obstacles.

Version Control:

Managing code changes and team collaboration

 Tracking Changes: Tools like Git and SVN allow
multiple people to work on the same code without
conflicts

 Code Storage: Central places like GitHub, GitLab and
Bitbucket store and manage code.

 E x p l o r e . . .

Introduction to Databases :

Learning how data is stored and managed in
software applications.

SQL Databases :

Store structured data in tables (e.g., MySQL, PostgreSQL).

NoSQL Databases :

Store unstructured data flexibly (e.g., MongoDB,
Cassandra).

Basics of Program Execution :

Code runs as binary (1s and 0s), the machine language.
Compilers translate all code before running it, while
interpreters execute it line by line.

GIT for Beginners

Learn Git with simple visualisations, animations and
by solving lab challenges.

T a u g h t b y :

Lydia Hallie

Once coding is completed,
only 50% of the work is
done.

The next major task is to deliver the
software to a public server and run it, so
all end users can access and see it. This
was seen as the final step in the delivery
process.

Code
Repository

Coding

testing building deploy
Servers

Running

To simplify your learning curve, let’s jump into the final step in SDLC
Running software on a server.  
We'll come back to testing, building, and packaging steps after this.

To run the coded software, so that end users can publicly access it, you need some kind of
infrastructure, specifically server computers. These are special types of computers

designed to handle such tasks.

In this area, you need to work on several important topics to become a DevOps engineer.

What is a Server?
A powerful computer that provides resources, data, and services to other
computers (clients) over a network

 Think of it like a waiter in a restaurant serving food and drinks to customers
 When you visit a website, your device requests information from a server. The

server sends back the data needed to display the webpage.

A server can ex ist in two ma in env ironments :

on-premises and in the cloud.

On-Prem ise :

Your own servers and hardware
located in your office.

Cloud :

Using remote servers on the internet

to store and manage data.

Benef its of Cloud Infrastructure

Low Costs :

No need to buy expensive
hardware; pay for what you use.

No Ma intenance :

The cloud provider handles all
updates and fixes.

Many Serv ices :

Offers security, load balancing,
storage, and more.

Scalability:

Easily increase or decrease resources as needed.

Pay-As-You-Go :

Only pay for the resources you use, saving money.

Coding

3

Deploying

&

Running

6

4/13

https://kodekloud.com/courses/git-for-beginners/?utm_source=course_banner&utm_medium=ebook&utm_campaign=fresher_ebook_git_for_beginners
http://kodekloud.com/?utm_source=footer_logo&utm_medium=ebook&utm_campaign=fresher_ebook_page4

Cloud computing Allows companies to use these cloud servers over the
internet, making it easy to get more resources when needed
without buying more hardware.

 Cloud Providers

azure

Microsoft’s cloud service with
many tools.

AWS

(Amazon Web Services)

 A leading cloud provider with
lots of services.

GCP

(Google Cloud Platform)

Google’s cloud service, great for
 data and machine learning.

Amazon Maintains Cloud Lead as Microsoft Edges Closer

Worldwide market share of leading cloud
infrastructure service providers in Q1 2024*

*Includes platform as a service (PaaS) and

 infrastructure as a service (IaaS) as well as

hosted private cloud services

Source: Synergy Research Group

Cloud Infrastructure service
revenues in Q1 2024

$76B

31%

25%

11%

4%

3%

2%

2%

2%

EXPLORE

Security
Protecting data and systems

 Security Best Practices: Strong passwords and two-factor
authentication enhance security

 Encryption: Learn how data is protected using
encryption techniques

 Firewalls: Understand how firewalls block
unauthorized access.

Serverless Computing
No need to manage servers; the cloud provider handles it all

 Easy deployment: Simplified Setup
 Automatic scaling: Adjusts Resources as Needed
 Pay only when code runs: Cost-Effective

As a DevOps Practitioner, you don't need to be an expert in Security, Networking or Take over managing the
whole infrastructure. These areas are typically handled by Specialized Individuals like System
Administrators and Network/Security Engineers. However, having a basic understanding of the mentioned
topics is essential.

To make these servers work efficiently, a good understanding of operating systems and
networking is essential.

Operating Systems

These are the software that makes servers run, like Windows,
MacOs or Linux. They manage resources and run applications.

Operating System (Linux)

Basics, file system, CLI, shell commands.

File System

Files are stored in a
structured manner for

easy access and
management.

CLI

Allows users to interact
with the OS using text

commands.

Shell Commands

Commands like ls, cd, and
rm are used to manage

files and directories.

File Perm issions

Understand how to control
access to files and

directories.

Network ing

This enables communication between devices and servers, ensuring data can travel quickly and securely.
Networking Basics of LAN, WAN, IP Addresses, and protocols - TCP/IP , HTTP/HTTPS , FTP ,

 SSH .

LAN (Local Area Network)

Connects devices in a small area.

WAN (W ide Area Network)

Connects devices over large
distances.

IP Addresses

Understanding IP addresses and
their roles in communication.

Deploying

&

Running

6 Deploying

&

Running

6

5/13

http://kodekloud.com/?utm_source=footer_logo&utm_medium=ebook&utm_campaign=fresher_ebook_page5

The journey from coding to

 running software in a

server, known as releasing
software to end users, is where
DevOps plays a crucial role.

This phase includes the majority of the tasks and
responsibilities of a DevOps Engineer. So, you need to
give more attention from here onwards.

d e v e l o p m e n t i n f r a s t r u c t u r e

D e v O p s

Continuous, Fast, High

Quality, Automated Process

After coding, the focus shifts to testing your software product.
. However, it is important to

understand how the application is tested. Knowing how these tests work makes you a fully
qualified DevOps engineer.

As a DevOps engineer,
you are not responsible for or directly involved in this work

What is Software Testing?

Basics and importance of ensuring software quality.

Software Testing

Checking if the software works
correctly and does what it's

supposed to do.

Importance

Finds and fixes problems (bugs)
to make the software reliable and

user-friendly.

Bug

An error or flaw in the software
that causes it to behave

unexpectedly or incorrectly.

Manual vs Automated Testing

Differences and why automated testing is beneficial.

Manual Testing

Humans check the software by following steps and
reporting issues.

Slower and can miss problems because people make mistakes.

Automated Testing

Computers run tests automatically using scripts.

Faster and more consistent in finding problems.

Types of Automated Tests

Different types of tests to check various aspects
of the software.

Unit Testing

Tests individual parts of the
software.

Integration Testing

Tests how different parts of the
software work together.

End-to-End Testing

Tests the entire application from
start to finish.

Popular Testing Tools

Tools like Selenium, JUnit, Cypress automate tests.

Selenium

Automates web browser testing.

JUnit

Framework for unit testing in Java.

CYPRESS

End-to-end testing for web applications.

Testing

4

6/13

http://kodekloud.com/?utm_source=footer_logo&utm_medium=ebook&utm_campaign=fresher_ebook_page6

Now we move on to building the software application. This is where we convert the application into
a deployable format, such as a JAR, WAR, Bundle or ZIP file.

To Become a DevOps engineer, there are some important things you need to know in this
process.

Run on Windows

MANUAL PROCESS
Complex, error-prone, hard
to manage as projects grow

WITH BUILD TOOLS
Automates compiling and
packaging code, ensures

consistency, reduces erros

Run on Linux Computer

CODE

DEPLOYABLE FORMAT

Converting Code to
Deployable Format

This process turns written
code into a program that can
be executed on a computer.

Deployable Format

The final product is an
application or program that
can be installed and run on
other machines.

The Bu ild Process Steps

The source code is compiled into executable code.
For example, Java code is compiled into bytecode.
Translates human-readable code into a format that

computers can execute.

The compiled code is packaged into a format that can
be easily deployed, such as a JAR or WAR file for Java
applications. Prepares the software for deployment by

bundling all necessary components together.

Different Bu ild Tools

Tools used for managing and automating the build
process.

Maven

Helps manage and build Java projects.

Gradle

A flexible tool that automates building,
testing, and deployment.

npm

Manages JavaScript projects and
dependencies.

As software projects grow, they often rely on external
libraries or tools to add features or functionality.
Managing these dependencies manually can be time-
consuming and error-prone. This is where package
managers come in.

How Package Managers Work

Handle dependencies.

These are external
libraries or tools that

the software needs to
work. Think of them as

extra features or
plugins.

Tools that help install,
update, and manage
these dependencies.

They ensure that all the
necessary parts are in
place for the software

to run.

With the packaged software application
bundle(WAR, Zip, etc.) ready, our journey doesn't
stop here. Instead of running our application on a
server in the traditional way, we use the modern
approach of containerizing the bundled
application.

PackagingCompil ation

Dependenc ies Package Managers

Containerize the Software Application.

With DevOps, we don't just run our software directly on virtual machines like before. Instead, we
use containers to run applications on servers. To do this, we package our application as a
container image. Docker is one of the most popular containerization technologies.

As a DevOps engineer, there are several key concepts you need to know.

V irtual Mach ines and Containers

V irtual

Mach ine

Acts like a separate
computer within your
computer. Commonly
used for running different
operating systems on one
machine.

Container

A lightweight way to run applications. Packages the
software and its dependencies together.

Benefits over VMs: Faster, smaller, and easier to
manage.

Docker ImageDockerfile

Packaged Java
Application from

Previous Step

Docker
Container

Containerization timeline

0 2013 2014 2015 2016 2017 2018 2019 2020

10%

20%

30%

40%

50%

Docker
containerization

debuted

20%

of companies have

containers
deployed

50%

of companies

have containers
deployed

63%

The majority of container
adopters run more than
100 instances today, and
the large-scale
containerization ranks are
growing.

Annual fees for container
technologies in 2017*

10%

34%

33%

23%

$0 - 10,000

$10,001 - 100,000

$100,001 -
500.000

$1,100,000

Biggest challenges when deploying container technology
40%

30%

20%

10%

0 Security Data

Management

Costs Reliability Scalability

Build &

Package

5

Build &

Package

5

7/13

runbuild

Copying

http://kodekloud.com/?utm_source=footer_logo&utm_medium=ebook&utm_campaign=fresher_ebook_page7

Push to Artifact Repository

After packaging into docker image, we should put it somewhere so everyone can access and
use it. This is where we should use an Artifact Repository which contains Build artifacts like
docker images.

DockerHub is one of the popular image repositories by Docker.

As a DevOps engineer, you should focus on the following:

Understanding Artifact Repositories

Artifact Repository:

A place to store built and packaged software files(build artifacts).

Like a digital library where you keep software components.

Purpose

 Helps share and reuse these files easily.

Makes it easy to use the same components in different projects.

Other Popular Artifact Repositories

Other places to store Docker images:

Amazon ECR

Amazon's storage
service for Docker

images.

Google GCR

Google's storage
service for Docker

images.

Azure ACR

Microsoft's storage
service for Docker

images.

JFrog
Artifactory

A tool for managing
and storing

software files.

G itHub
Packages

GitHub's service for
storing and sharing
software packages.

Hands-on Tutorial

Kubernetes for the
Absolute Beginners

T a u g h t b y :

Mumshad Mannambeth

Docker is a tool that helps you
easily create and manage
containers. This ensures that the
application works consistently on
any computer.

Other Container Tool
 Podman: A daemonless container engine for developing,

managing, and running OCI containers
 Containerd

Docker Training Course
for the Absolute
Beginner

T a u g h t b y :

Mumshad Mannambeth

Manage Containers

Monitoring for failures

Restarting containers

Patching Applications

Application Grows

Container
Orchestration

Python backend frontend

mongo-db redis

Docker Compose

Docker containers are used to run applications. Docker Compose can manage a few containers, but
for hundreds of containers, we use container orchestration tools like Kubernetes.

Kubernetes(K8s) Can:

Scale Up
Effortlessly:

Handle more traffic

by adding containers
automatically.

Seamless
Updates:

Update your

applications with
zero downtime.

Self-Healing:

Kubernetes

automatically fixes
and replaces failed

containers.

Even Traffic
Distribution:

Keep performance
optimal with smart

load balancing.

Always On
Watch:

Kubernetes ensures
your containers are

always running
smoothly.

Automatic
Restarts:

If something crashes,
Kubernetes brings it
back to life instantly.

To Become a DevOps Engineer, It's important to
get familiar with its core objects, which are the
building blocks for deploying and managing
applications.

master

Etcd
API

Server

Scheduler and

Controller Manager

Node

Kubelet Proxy

DEPLOYMENT
Updates and Rollback

Replica Set
Self-Healing, Scalable, Desired State

Pod 1

Container

Container

Pod 1

Container

Container

Node

Kubelet Proxy

DEPLOYMENT
Updates and Rollback

Replica Set
Self-Healing, Scalable, Desired State

Pod 1

Container

Container

Pod 1

Container

Container

Node

Kubelet Proxy

DEPLOYMENT
Updates and Rollback

Replica Set
Self-Healing, Scalable, Desired State

Pod 1

Container

Container

Pod 1

Container

Container

Build &

Package

5

Build &

Package

5

8/13

https://kodekloud.com/courses/docker-for-the-absolute-beginner/?utm_source=course_banner&utm_medium=ebook&utm_campaign=fresher_ebook_docker_for_the_absolute_beginner
http://kodekloud.com/?utm_source=footer_logo&utm_medium=ebook&utm_campaign=fresher_ebook_page8
https://kodekloud.com/courses/kubernetes-for-the-absolute-beginners-hands-on/?utm_source=course_banner&utm_medium=ebook&utm_campaign=fresher_ebook_kubernetes_for_the_absolute_beginners_hands_on

Do you think Coding to

 Deploying Software

to Server should be done
manually?

No, the purpose of DevOps is to automate this process,
reducing manual intervention to make it more efficient,
faster, and ensure continuous, high-quality delivery.

D E V E LO P M E N T

C o d e R e p o s i t o r y

O P E R AT I O N S

S e r v e r s

Testing

Build and Package

build software build container image store in artifact repo

We should automate all the steps mentioned from running tests to pushing built
container image to artifact repositories. This can be seen as a build automation
pipeline. Also this process is part of the ‘Continuous Integration’. To start this
process, we should pull the code from the central repository, like GitHub.

What happens next?

Since the testing and build steps are completed, the code needs to be pushed to
the public server as we learnt earlier. This process, known as Continuous
Delivery/Deployment, ensures that any bug fixes or new features are
automatically deployed as part of the Continuous Delivery/Deployment cycle.

D E V E LO P M E N T

C o d e R e p o s i t o r y

O P E R AT I O N S

S e r v e r s

Testing deploy to server

Build and Package

build software build container image store in artifact repo

This flow is the heart of the CI/CD Pipeline, crucial for DevOps. As a DevOps
Engineer, you plan, create, and maintain this pipeline to continuously update
software with bug fixes and new features.

Jenkins is a popular tool to automate this process.

Jenkins

9/13

http://kodekloud.com/?utm_source=footer_logo&utm_medium=ebook&utm_campaign=fresher_ebook_page9

What is Jenkins? 

Jenkins Pipeline

Think of Jenkins as an assistant that helps developers by automatically running the steps we discussed earlier,
from coding to deploying the application to a server, without any manual intervention. With these steps

automated, it is like a recipe for Jenkins to follow. This is what we call a .

T E S T O N L I N U X

S TA R T B U I L D R U N T E S T S D E P LOY E N D

T E S T O N W I N D O W S

Jenkins Pipeline

To be proficient in creating,
maintaining, and troubleshooting
Jenkins Pipelines, you'll need to learn
how to define these pipelines using
Groovy, the scripting language used
by Jenkins. Mastering this skill will
enable you to automate complex
workflows and ensure smooth
deployments.

To gain these essential skills, check
out our course

Jenkins
T a u g h t b y :

Michael Levan

While Jenkins is one of the most popular tools for
automating, there are many other CI/CD tools
available, each with its own specific features

 GitLab CI , Travis CI, CircleCI, Github Actions ,
Azure DevOps

Understanding how to automate the deployment of software to a server is crucial, but in real-world scenarios,
companies rarely deploy software directly to the server that real end-users access. These servers, known as
Production servers or Production environments, require careful handling.

CI/CD

To excel as a DevOps engineer, you
need to understand the CI/CD process

and be skilled in using an automation tool like
Jenkins or GitHub Actions.

c i/CD

CI (Continuous Integration):

Frequently adding code changes into a shared repository. Developers

regularly add their code changes, which are automatically tested to catch
problems early.

CD (Continuous Delivery & Deployment):

Ensures that code changes are automatically prepared for a release to

production.

The DevOps lifecycle is an infinite loop, Because It represents the never-ending cycle of software features and improvements

C O D I N G

Continuous Integration

Manual

Automated

Continuous
Delivery

Continuous Deployment

T E S T I N G B U I L D &
PAC K AG E

B U I L D &
PAC K AG E

D E P LOY TO
P R O D U C T I O N

D E P LOY TO
P R O D U C T I O N

What ’s the D ifference Between Continuous Delivery
and Continuous Deployment?

Continuous Delivery (CD):

A software development practice where code changes are automatically
tested and prepared for a release to production. The deployment to
production is a manual step. The team decides when to deploy

 Benefit: Reduces the risk of deployment errors and allows for
smoother releases by always having code in a deployable state.

"Continuous Delivery ensures your code is always
ready to go live"

Continuous Deployment (CD):

Extends Continuous Delivery by automatically deploying every code
change that passes all stages of the production pipeline. The deployment
to production is automatic without manual intervention

 Benefit: Speeds up the deployment process, allowing for rapid delivery
of new features and fixes to users.

"Continuous Deployment ensures your latest
code changes are always live"

10/13

http://kodekloud.com/?utm_source=footer_logo&utm_medium=ebook&utm_campaign=fresher_ebook_page10
https://kodekloud.com/courses/jenkins/?utm_source=course_banner&utm_medium=ebook&utm_campaign=fresher_ebook_jenkins

We discussed running software on servers. Now, you need to know our software typically runs
on at least three main servers for three purposes:

Development

Where developers create
and modify software

Test

(Or Staging)

Where software is tested
for functionality and
performance.

Production

Where the software
reaches users.

Deploying software across these environments can be automated with tools like Jenkins.
However, manually creating and configuring these environments is complex, time-consuming, and
prone to errors.

Thankfully, we can automate the creation and configuration of these
servers too. One popular tool for creating (provisioning) infrastructure is
Terraform.

However, setting up the servers doesn't stop at just creating them. To run
our software applications, we need to configure the servers with the
necessary dependencies, supporting libraries, and utilities. This
configuration can be automated using tools like Ansible, Chef, or Puppet.

Infrastructure Creation with Terraform
Scripts
 You write Terraform scripts to define the

infrastructure you need
 You run these scripts, and Terraform creates the

virtual machines, sets up networking, and creates
databases as specified.

Configuration with Ansible Playbooks
 After Terraform has created the infrastructure, you

use Ansible to configure it
 Ansible scripts called as ‘playbooks’ are run to

install software on the virtual machines, configure
settings, setting up users, and ensure everything is
ready for use.

Terraform Basics Training
Course

T a u g h t b y :

Vijin Palazhi

Learn Ansible Basics -
Beginners Course

T a u g h t b y :

Mumshad Mannambeth

After creating infrastructure with Terraform, Ansible can be used to configure it,
making them a powerful combination. Using both tools together offers numerous
benefits.

Ease of
Replication:

Easily replicate

infrastructure and
configurations in

different environments.

D isaster
Recovery:

Quickly recover systems
by re-running scripts to
restore previous states.

Consistency:

Ensure consistent
infrastructure and

configurations, reducing
errors.

Automation:

Automate tasks to save
time and reduce manual

work.

Once your cool software application is deployed and publicly accessible to end-users, it's
important to remember that new issues can still arise.

These might include performance bottlenecks or new problems we call bugs (as you
already know from the first part of this book).

Why Monitoring is Important

To ensure your application runs smoothly and provides
a good experience for users, continuous monitoring is
essential. Monitoring helps you detect and fix issues
quickly before they affect your users.

What Needs to be Monitored

 Your Software Application: Keep an eye on how the
application performs, track user activities, and identify
any errors

 Kubernetes Cluster: Monitor the health and
performance of the Kubernetes cluster that runs your
application

 Infrastructure: Keep track of the underlying servers,
databases, and network that support your Kubernetes
cluster.

As a DevOps engineer, you should be familiar with setting
up a mechanism to continuously monitor

You do not need to do this totally manually,
there are tools to help you.

Prometheus is one of these tools that collects and stores
metrics from your application and infrastructure. Metrics are
numerical data that indicate how well your application and
systems are performing.

You can set up Prometheus to collect data like response
times, error rates, and resource usage (CPU, memory) from
your application and servers.

This data is stored and can be queried to understand how
your system is performing over time.

Grafana visualizes the data collected by Prometheus,
turning raw metrics into interactive graphs and dashboards.
You can create dashboards in Grafana to display key metrics
from Prometheus. For example, you might have a dashboard
that shows the average response time of your application,
the number of errors per minute, and the current CPU usage
of your servers. This helps you quickly identify any issues
and understand the overall health of your system.

Another very popular monitoring toolchain is the ELK Stack.

ELK Stack (Elasticsearch, Logstash, Kibana):

You can use the ELK Stack to aggregate logs from various parts of your system. For example, if your
application logs errors or important events, Logstash can collect these logs and send them to Elasticsearch.
You can then use Kibana to search through the logs and create visualizations, such as a graph of error
occurrences over time, helping you identify patterns and troubleshoot issues quickly.

Monitoring

7

11/13

https://kodekloud.com/courses/terraform-for-beginners/?utm_source=course_banner&utm_medium=ebook&utm_campaign=fresher_ebook_terraform_for_beginners
https://kodekloud.com/courses/ansible-for-the-absolute-beginners-course/?utm_source=course_banner&utm_medium=ebook&utm_campaign=fresher_ebook_ansible_for_the_absolute_beginners_course
http://kodekloud.com/?utm_source=footer_logo&utm_medium=ebook&utm_campaign=fresher_ebook_page11

F e e d i n g

R a w D ata

Congratulations on
reaching the final part of
your journey to become a
DevOps Engineer!
Remember, one of the key principles in DevOps is to
prefer automation over manual tasks.

As a DevOps engineer, you'll work closely with developers and operations
teams. You'll often need to automate repetitive tasks to save time and
reduce errors. Some examples of tasks you might automate include:

 ⚠ ️
Alerting and

Notifications:

Notifying the team of issues or

critical events.

Security Checks:

Running automated scans to

detect vulnerabilities

Backups and
Restores:

Saving and restoring important
data regularly.

Software Updates:

Keeping software and

applications up to date.

To automate these tasks, you
might need to write small

applications or scripts.
Having proper knowledge of a
scripting language is crucial

for a DevOps engineer.

Since you already know about
Linux from the first part of this

ebook, learning shell
scripting is a natural next

step.

Shell scripting allows you to
execute a series of commands
written in a script, automating
repetitive tasks to save time

and reduce errors. Bash
scripting is a type of shell

scripting specific to the Bash
shell, commonly used in

Linux.

Remember, in the first part of
this book, we covered the
Linux CLI (Command Line
Interface) as a mandatory

topic.

Additionally, learning more robust and powerful
languages like Python or Golang can be very beneficial
for your long-term career. These languages offer
greater flexibility and capabilities for automating
complex tasks and developing custom solutions.

While learning the basics in the first part of this book, you can also explore
Python and Golang. These powerful programming languages are perfect for
automating complex tasks. You can learn them in parallel, even though you
won't be coding full applications as a DevOps engineer.

Python Basics
T a u g h t b y :

Lydia Hallie

Golang
T a u g h t b y :

Priyanka Yadav

Shell Scripts for
Beginners

T a u g h t b y :

Mumshad Mannambeth &

Vijin Palazhi

12/13

http://kodekloud.com/?utm_source=footer_logo&utm_medium=ebook&utm_campaign=fresher_ebook_page12
https://kodekloud.com/courses/python-basics/?utm_source=course_banner&utm_medium=ebook&utm_campaign=fresher_ebook_python_basics
https://kodekloud.com/courses/golang/?utm_source=course_banner&utm_medium=ebook&utm_campaign=fresher_ebook_golang
https://kodekloud.com/courses/shell-scripts-for-beginners/?utm_source=course_banner&utm_medium=ebook&utm_campaign=fresher_ebook_shell_scripts_for_beginners

 Glossary of Terms

13/13

Build & Package the
application:
The process of transforming the source code into
runnable applications and gathering them with all
required resources and dependencies.

Cloud Provider:
A company that offers cloud computing services
such as storage, processing power, and software
applications over the internet.

Cloud Server:
A virtual server hosted on the internet, allowing for
easy scaling and management.

Coding:
The act of writing computer programs using
programming languages.

Daemonless Container:
A container that runs independently without needing
a constantly running management program.

Data:
Information processed or stored by a computer. This
can include text, numbers, images, and more.

Data Structures and
Algorithms:
Techniques and methods used in programming to
store, organize, and manipulate data efficiently.

Deployment Guide:
A document or set of instructions detailing how to
deploy software application on a specific
environment or infrastructure.

Deploying Software
Application:
The process of making a software application ready
for use by installing, configuring, and launching it on
the target environment.

Developers / Development
Team:
Responsible for creating and maintaining software
applications.

Encryption:
The process of converting data into a coded format
to prevent unauthorized access.

End-User:
The person or group who will ultimately use the
software application.

Environment:
The setup of hardware, software, network
resources, and configurations in which applications
are deployed, tested, and run.

F irewall:
A security system that checks and controls data
coming in and out of a network to keep it safe.

FTP:
A method to transfer files between computers over
the internet.

HTTP:
The system that allows your web browser to load
and display web pages from the internet.

HTTPS:
A secure version of HTTP that keeps your
information safe while browsing.

Infrastructure as a Service
(IaaS) :
A cloud computing service model that provides
virtualized computing resources over the internet.

IT Infrastructure /
Infrastructure:
The hardware, software, network resources, and
services necessary for the operation and
management of an enterprise IT environment.

Monitor and Operate:
The process of continuously observing the
performance of a software application and managing
its operations to ensure it runs smoothly.

OC I Containers:
Containers that follow the Open Container Initiative
standards for runtime and image specifications to
ensure compatibility and reliability.

Operations team:
The team responsible for maintaining and managing
the IT infrastructure and software applications

Performance in a Software:
A measure of how well a software application
functions, typically in terms of speed,
responsiveness, and resource utilization.

Platform as a Service (PaaS) :
A cloud computing service model that provides a
platform allowing customers to develop, run, and
manage applications without dealing with the
underlying infrastructure.

Programming Language:
A special language used to write instructions that a
computer can follow to perform tasks and solve
problems.

Public Server:
A server that is accessible over the internet and can
be used by multiple clients or users.

Running Software:
The state of a software application when it is
executing and performing its designed tasks.

SDLC (Software Development
L ife Cycle) :
A process used by the software industry to design,
develop, and test high-quality software. It involves
several stages: planning, design, development,
testing, deployment, and maintenance.

Server/Server Computer:
A computer or system that provides resources, data,
services, or programs to other computers, known as
clients, over a network.

Software:
Programs and other operating information used by a
computer.

Software Application:
Also known as Application or Software, it is a
program or group of programs designed for end-
users to perform specific tasks.

SSH :
A secure way to access and control computers
remotely over the internet.

TCP/ IP:
The basic language that computers use to
communicate over the internet.

DevOps for Absolute Beginners, 2024

https://kodekloud.com/?utm_source=footer_logo&utm_medium=ebook&utm_campaign=fresher_ebook_last_page

